De zorros y conejos


Espero que este problema os guste; es algo mas dificil ( al menos su solucion matematica) de lo habitual en este blog , pero implica un analisis de la situacion que a mi resulta muy interesante.

En este analisis hay que enfocar el desarrollo del problema segun el comportamiento del zorro.

El problema dice así:

Un zorro ve a un conejo situado a 90 metros de distancia al sur de donde él se encuentra; el conejo empieza a correr en linea recta , a una velocidad de 4 m/s en direccion Este.Al mismo tiempo que el conejo , el zorro empieza a perseguirlo , corriendo a 5 m/s.

¿Cuantos metros habrá recorrido el zorro cuando alcance al conejo?

Notas :

1. Es un problema matematico , no tenemos en cuenta las aceleraciones iniciales ni posibles alteraciones en las velocidades de ambos animales ( es decir , nada de si el movimiento del conejo es en zig-zag o excusas parecidas)

2.La distancia pedida es la minima requerida , claro , no vale decir que hay infinitas soluciones si el zorro se dedica a correr sin sentido.

3. El zorro es un animal listo , pero no es un matematico ni adivino.

4. No hay trucos respecto a la curvatura de la Tierra ni a la situacion geografica , es decir no estamos en los polos ni cerca de ellos , que ya nos conocemos…;) , consideramos la superficie plana y el Este y Sur son siempre Este y Sur.Es un problema matematico,con razonamiento logico pero no de pensamieto lateral

Todos los enfoques serán bienvenidos.

Actualizacion: Soluciones en comentarios. Alt+126 , macnolo y Antonio-icando , enfocaron bienm el problema.

¿Mentiré hoy?


Juan es un mentiroso con una peculiaridad. El miente 6 dias de la semana , pero hay un dia de la semana ( siempre el mismo , claro) en el que dice la verdad.

En tres dias sucesivos , nos dijo lo siguiente:

Dia 1: “Miento los lunes y martes”
Dia 2: “Hoy es jueves, Sabado o domingo”
Dia 3: “Yo miento miercoles y viernes”

¿Que dia de la semana es el que Juan siempre dice la verdad?

Actualizacion: Solucion en comentarios

Comprando sellos


Mandé a mi hija Noemí a comprar sellos de distinto valor.
Los sellos tienen los siguientes valores : 3c ,9c,11c,17c y 21c.

Como es un poco olvidadiza , no recordaba cuantos sellos de cada tipo en concreto le pedí , solo recordó que:

De tres de ellos , le dije que me trajera 8 sellos de cada.
De los otros dos valores , le pedi 9 sellos de cada.

pero como sabe que le dí el dinero exacto ( un billete de 5€) , me los pudo traer tal como queria.

¿Como lo supo?

NOTA : Es interesante , ademas de dar la solucion , que expliqueis como lo habeis hecho , ya que como en otras ocasiones , se puede hacer mediantes “trucos matematicos” sencillos.

Actualizacion : La solucion en comentarios por Eduardo H. Campos y Antonio-icando.

Encuentra a Lohengrin

Haz click para verlo mas grande.

Lohengrin es una ópera en tres actos con música y libreto por Richard Wagner.

La historia narra un pasaje de la vida de Lohengrin, caballero e hijo de Perceval, que viaja al reino de Heinrich I , para defender a Elsa, acusada de un crimen que no cometió. Elsa y Lohengrin se enamoran y Lohengrin pide su mano con la condición de que nunca le pregunte ni su nombre ni su origen. Ella promete cumplir lo que le piden y se casan, pero angustiada por las dudas, Elsa finalmente rompe la promesa. Derrotado, Lohengrin explica quién es y de dónde viene y por ello, está obligado a dejar esas tierras y volver a su lugar de origen como llegó: transportado por un cisne blanco y solo.

Una imagen clasica es esta:

Encuentra a Lohengrin en el dibujo del teatro donde se va a representar
la obra.

Actualizacion: Aquende pone la imagen con la solucion en comentarios.

Actualizacion de soluciones

Actualizo las soluciones del mes de junio.

La verdad es que casi todos los post estaban ya resueltos por vosotros en comentarios, ( ese trabajo que me he ahorrado , jeje) .

He añadido lo siguiente:

Encuentra los 7 delfines : Añadido imagen de la solucion.

¿Que se ve en estas imagenes? : Añadido las imagenes sin distorsionar.

2 clasicos de cerillas : Añadido imagenes con las soluciones